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Abstract. In this paper, the chromatic polynomial structure on Riemannian manifolds
and the almost golden structure on the tangent bundle of a Finsler manifold have been stud-
ied. A class of g-natural metrics on the tangent bundle of a Finsler manifold have been
considered and some conditions under which the golden structure is compatible with the
above-mentioned metric are proposed. The Levi-Civita connection associated with the men-
tioned metric is calculated and the results of it are presented. Finally, the integrability of
the golden structure and its compatibility with the covariant derivative is studied.
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1. Introduction and preliminary concepts
The golden structure has been used in many different areas, in architecture, music, and

arts. Research on the properties of the golden structure on manifolds is an interesting topic
in mathematics. Hretcanu and Crasmareno in [3] investigated the geometry of the golden
structure on manifolds and in [7] presented some applications of the golden ratio in differential
geometry. The integrability of this structure has been investigated in [5]. Later, authors
in [4] discussed the compatible Riemannian metrics and adapted covariant derivatives to a
golden structure. The past thirty years have seen increasingly rapid advances in the field of
polynomial structures on the tangent bundle of a Riemannian manifold [9]. In [12], Özkan
studied the complete and horizontal lifts of golden structures in the tangent bundle.

Analogously to the geometry of the polynomial structures of a Riemannian manifold, the
geometry of the polynomial structures of a Finsler manifold has not been studied. Only
a few authors have studied these structures on the Finsler manifolds. Bing Ye Wu with
consideration of the Sasaki metric studied the complex structures in the tangent bundle of a
Finsler manifold.

Recently, some researchers have focused on Finsler manifolds and obtained many geometri-
cal results in such spaces. For example, in [1] M. T. K. Abbassi and G. Calvaruso investigated
geometric properties of “g-natural” metrics on the tangent bundle TM . Peyghan and Tayebi
in [13] showed the almost complex structure is not compatible with the Miron metric, but
they provided another definition of the complex structure that is compatible with the Miron
metric.
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Our study will firstly focus on the metric ĝ on TM0. We consider the (M,F ) as a finsler
metric with the Chern connection and obtain the Levi-Civita connection of the metric ĝ that
is defined in section 2. We proved that the map F has constant relatively isotropic Landsberg
L = −1

2C if and only if the vertical distribution V ˆTM0 is totally geodesic in T ˆTM0. We next
prove that F is a weakly Berward metric if div̂(Xv) = 0.

In recent years, several authors have studied the polynomial structures such as golden
structure, metallic structure, product, and complex structures of manifolds [8]. In 2008,
Mirecea Grasmareanu and Cristina Elena examined the golden structure on differentiable
manifolds (see [3]). Kazan et al later proved that the metallic structure J̃ on the tangent
bundle TM with Levi-Civita connection ∇ and Riemannian curvature tensor R is integrable
if and only if Riemannian manifold M is flat, i.e. R ≡ 0.

In section 3, we give the almost golden structure ϕ̂ on the slice tangent bundle T ˆTM0.
We show that ϕ̂ is a golden structure on T ˆTM0 if and only if the metric F is of constant
flag curvature [10]. Later, we examine the almost golden structure compatibility with the
Levi-Civita connection on TM0. We show that with metric ĝ the almost golden structure
ϕ̂ is compatible with covariant derivative ∇̂ if and only if M is a flat Riemannian manifold.
Throughout the paper, all manifolds, connections,... are assumed to be differentiable of class
C∞. All data generated or analyzed during this study are included in this published article.
In this section, we give a brief presentation of some definitions and propositions that use in
the rest of this paper. For general background in the subject, the reader can consult [2].
Suppose that M is an n−dimensional C∞ manifold and let TxM be the tangent space of M
at x. The tangent bundle TM is the union of all tangent space to M at all points x ∈ M ,
that is

TM :=
∪

x∈M
TxM = {(x, y) |x ∈ M, y ∈ TxM } .

Let TM0 = TM\0, the natural bundle projection π : TM −→ M is given by π(x, y) = x.
A Finsler manifold is a manifold M and a function F : TM −→ [0,∞) such that,

i. the function F is smooth on TM0 (on the entire tangent bundle TM0),
ii. the function F is positive 1−homogeneous F (x, λy) = λF (x, y) for all λ > 0,
iii. the Hessian matrix (gij) =

[
1
2F2(x, y)

]
yiyj

is positive- definite at every point of TM0.
Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, one can define

Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

=
1

4

∂3

∂r∂s∂t

[
F 2(y + ru+ sv + tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on TxM . The family
C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that C = 0 if and only if F is
Riemannian.

For y ∈ TxM0, define Iy : TxM → R by Iy(u) =
∑n

i=1 g
ij(y)Cy(u, ∂i, ∂j), where {∂i} is

a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called the mean Cartan torsion.
Thus, Iy(u) := Ii(y)u

i, where Ii := gjkCijk.

Define the Landsberg curvature Ly : TxM×TxM×TxM → R by Ly(u, v, w) := Lijk(y)u
ivjwk

where Lijk := Cijk|sy
s. F is called a Landsberg metric if L = 0. A Finsler metric F on a man-

ifold M is called of relatively isotropic Landsberg curvature if L+ cFC = 0, where c = c(x)
is a scalar function on M .
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The horizontal covariant derivatives of the mean Cartan torsion I along geodesics give rise
to the mean Landsberg curvature Jy : TxM → R which are defined by Jy(u) := Ji(y)u

i,
where Ji := Ii|sy

s. The family J := {Jy}y∈TM0 is called the mean Landsberg curvature. A
Finsler metric F on a manifold M is called of relatively isotropic mean Landsberg curvature
if J+ cF I = 0, where c = c(x) is a scalar function on M .

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0,
which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi

, where

Gi :=
1

4
gil{[F 2]xkyly

k − [F 2]xl}, y ∈ TxM.

The G is called the spray associated with (M,F ). In local coordinates, a curve c(t) is a
geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

For y ∈ TxM0, define the Berwald curvature By : TxM × TxM × TxM → TxM and the
mean Berwald curvature Ey : TxM × TxM → R by By(u, v, w) := Bi

jkl(y)u
jvkwl ∂

∂xi |x and
Ey(u, v) := Ejk(y)u

jvk, where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Ejk :=

1

2
Bm

jkm,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. Finsler metrics satisfying B = 0 or E = 0 are

called Berwald metrics and weakly Berwald metrics, respectively.

Then, for a non-zero vector y ∈ TxM0, the Riemann curvature is a family of linear trans-
formation Ry : TxM → TxM with homogeneity Rλy = λ2Ry, ∀λ > 0 which is defined by
Ry(u) := Ri

k(y)u
k ∂
∂xi , where

(1.1) Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0 is called the Riemann curvature. Let us put

(1.2) Ri
kl :=

1

3

{∂Ri
k

∂yl
−

∂Ri
l

∂yk

}
, Ri

j kl :=
1

3

{ ∂2Ri
k

∂yj∂yl
−

∂2Ri
l

∂yj∂yk

}
.

Then
Ri

k = Ri
j kly

jyl, Ri
kl = Ri

j kly
j , Ri

j kl +Ri
j lk = 0,(1.3)

Rh
ijk +Rh

jki +Rh
kij = 0.(1.4)

Lemma 1.1. The Riemann curvature Ry is well-defined linear transformation satisfying fol-
lowing

Ry(y) = 0, gy
(
Ry(u), v

)
= gy

(
u,Ry(v)

)
.

Let π be natural projection map of TM to M . We obtain the tangent mapping of the
projection π follows:

π∗ : T (TM) −→ TM

Let us put
VTM :=

∪
υ∈TM

Kerπυ
∗ .
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The set VTM is an n−dimensional sub-bundle of T (TM0) that is called the vertical tangent
bundle of TM0. A non-linear connection on TM is an extension distribution HTM for VTM
on T (TM). In the other words:

(1.5) T (TM) = VTM ⊕HTM,

where HTM is called horizontal vector bundle that is an n−dimensional sub-bundle of
T (TM0). It is known that

{
∂
∂xi ,

∂
∂yi

}
is a basis for T (TM). Let us introduce a basis for

T (TM0) that is proportional to the above decomposition. If πυ
∗ is the natural projection map

from Tυ(TM) to TM , in this case;

πυ
∗

(
∂

∂xi

)
=

∂

∂xi
, πυ

∗

(
∂

∂yi

)
= 0.

According to the definition of vertical vector bundle, the set of vectors
{

∂
∂yi

}
is the basis for

VTM , based on the above decomposition for T (TM). The basis
{

∂
∂yi

}
can be expanded to

basis
{
Si,

∂
∂yi

}
for T (TM). Since

{
∂
∂xi

}
is a member of T (TM). The set ∂

∂xi = Aj
i (x, y)Sj +

N j
i (x, y)

∂
∂yj

, where the above Aj
i and N j

i are differential functions such that, they are defined
locally on TM . So

{
Aj

i (x, y)Sj

}
is the locally basis for HTM . Then we have Aj

i (x, y)Sj =

∂
∂xi −N j

i (x, y)
∂

∂yj
.

We put Aj
i (x, y)Sj = δ

δxi . Therefore the set
{

δ
δxi ,

∂
∂yj

}
is a basis for Tυ(TM) proportional

to the above decomposition. Then N j
i are called the coefficients for a non-linear connection.

These coefficients on TM0 satisfying transformation rules ∂x̃j

∂xi Ñ
h
j = ∂x̃h

∂xj N
j
i − ∂2x̃h

∂xi∂xj y
j .

2. Some results on g-natural metrics
Let (M,F ) be a Finsler manifold. For the horizontal-vertical decomposition of the Sasaki

metric g̃ on the slit tangent bundle, TM0 is defined by

(2.1) g̃ij(x, y) = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj .

It easily shows that g̃ is a Riemannian metric on TM0. A general metrics that can be defined
on TM0 is a family of Riemannian metrics that we show it ĝ. The Sasaki metric is particular
case of this metric. It is defined by

ĝ(x, y) = c1gijdx
i ⊗ dxj + (c2F

2gij + c3F
2yiyj)δy

i ⊗ δyj + c4gijdx
i ⊗ δyj(2.2)

for all (x, y) ∈ TM0, with real functions c1, c2, c3, c4 : [0,∞] −→ [0,∞] such that c1, c2, c3 > 0.
The Sasaki metric is obtained for c1 = c2 = 1 and c3 = c4 = 0. Therefore ĝ is a Riemannian
metric on TM0. The Levi-Civita connection ∇̂ on TM0 with respect to ĝ is given by the
Koszul formula

2ĝ
(
∇̂Ŷ

X̂
, Ẑ

)
= X̂ĝ

(
Ŷ , Ẑ

)
+ Ŷ ĝ

(
Ẑ, X̂

)
− Ẑĝ

(
X̂, Ŷ

)
+ ĝ

([
X̂, Ŷ

]
, Ẑ

)
− ĝ

([
Ŷ , Ẑ

]
, X̂

)
+ ĝ

([
Ẑ, X̂

]
, Ŷ

)
,

and the Lie bracket of a tangent bundle with the Chern connection by the following:
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Proposition 2.1. Let (M,F ) be a Finsler manifold with the vertical basis ∂
∂yi

|y ∈ VyTM and
the horizontal basis δ

δxi |y ∈ HyTM with the Chern connection. Then the Lie bracket of the
tangent bundle TM of M satisfies:

i.
[

δ
δxi ,

δ
δxj

]
= −Rk

ij
∂

∂yk
,

ii.
[

∂
∂yi

, ∂
∂yj

]
= 0,

ii.
[

δ
δxi ,

∂
∂yj

]
= (Γk

ij + Lk
ij)

∂
∂yk

where Rk
ij define a skew-symmetric Finsler tensor field of type (1.2) and (Γk

ij + Lk
ij) are

the local coefficients of the Berward connection. Some other Finsler tensor fields defined by
Rk

ij will be useful in study of Finsler manifolds of constant flag curvature:

Rhij = ghkR
k
ij , Rhj = Rhijy

i, Rk
j = gkhRhj .(2.3)

Consequently, we have

yhRhij = 0, yhRhj = 0, Rij = Rji,(2.4)

and

Rk
ij =

1

3

{
∂Rk

j

∂yi
− ∂Rk

i

∂yj

}
.(2.5)

Also the Cartan tensor field is given by its local components:

Ck
ij =

1

2
gkh

∂gij
∂yh

, Cijk =
1

2

∂gik
∂yj

.(2.6)

It is easy to see that Cijk is symmetric with respect i, j, k. Furthermore, we deduce that
(M,F ) becomes a Riemannian manifold, that is gij depend on (xk) alone if and only if we
have Ck

ij = 0 for all i, j, k ∈ {1, ..., n}. By the homogeneity condition for F , we obtain
yiCk

ij = 0.

Lemma 2.2. Let (M,F ) be a Finsler manifold, then the Levi-Civita connection ∇̂ on the
Riemannian manifold (TM0, ĝ) is locally expressed as follows:

∇̂
∂

∂yj

∂

∂yi

=
2

3

(
Ck
ij + 2Lk

ij

) δ

δxk
+

2

3

(
Ck
ij − Lk

ij

) ∂

∂yk
,(2.7)

∇̂
δ

δxj

∂

∂yi

=
2

3

(
2Ck

ij + ylR k
lij + Lk

ij

) δ

δxk
− 1

3

(
2Ck

ij + ylRk
lij + 4Lk

ij

) ∂

∂yk
,(2.8)

∇̂
∂

∂yj

δ

δxi

=
2

3

(
2Ck

ij − ylRk
lij + Lk

ij

) δ

δxk
+

1

3

(
3Γk

ij − 2Ck
ij + ylRk

lij − Lk
ij

) ∂

∂yk
,(2.9)

∇̂
δ

δxj

δ

δxi

=
1

3

(
3Γk

ij + 2Ck
ij + Lk

ij

) δ

δxk
− 1

3

(
4Ck

ij + ylRk
lij + 2Lk

ij

) ∂

∂yk
.(2.10)

where

Γk
ij =

1

2
gkh

{δgki
δxj

+
δghj
δxi

− δgij
δxh

}
.(2.11)
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The vertical distribution V ˆTM0 is totally geodesic (resp. minimal) in T ˆTM0 if H∇̂
∂

∂yj

∂

∂yi

= 0

(resp. gijH∇̂
∂

∂yj

∂

∂yi

= 0), where H denotes the horizontal projection. Similarly, if we denote by V

the vertical projection, then we say that the horizontal distribution H ˆTM0 is totally geodesic
(resp. minimal) in T ˆTM0 if V∇̂

δ

δxj

δ

δxi

= 0 (resp. gijV∇̂
δ

δxj

δ

δxi

= 0. So by a simple calculation, we
can get the following:

Proposition 2.3. Let (M,F ) be a Finsler manifold, then the following hold:
i. the function F has constant relatively isotropic Landsberg L = −1

2C if and only if
the vertical distribution V ˆTM0 is totally geodesic in T ˆTM0.

ii. the function F has constant relatively isotropic mean Landsberg J = −1
2I if and only

if the vertical distribution V ˆTM0 is minimal in T ˆTM0.
iii. the function F is flat metric if and only if it has constant relatively isotropic Landsberg

curvature L = −2C.

Proof. Part [i]: Assume that H∇̂
∂

∂yj

∂

∂yi

= 0. By (2.7) we have Ck
ij +2Lk

ij = 0. This means that

F is a constant relatively isotropic Landsberg metric.

Part [ii]: Let gijH∇̂
∂

∂yj

∂

∂yi

= 0. Then we have gij(Ck
ij + 2Lk

ij) = 0 and so Ij + 2Jj = 0

which means that F is a constant relatively isotropic mean Landsberg metric.

Part [iii]: Let H ˆTM0 be totally geodesic. Then we get 16Ck
ij + 8Lk

ij + 3ylRk
lij = 0. It

is clear that R = 0 if and only if L = −2C. □

Corollary 2.4. Let (M,F ) be a Finsler manifold. If div̂(Xv) = 0. Then F is a weakly Berward
metric.

Proof. Let div̂(Xv) = 0. So we have Γk
ij − 2Ij − Jj = 0. Contracting it with yi imply that

Nm
m = 0. It follows that Eij := 1

2
∂2Nm

m

∂yi∂yj
= 0, which means that F is a weakly Berward

metric. □

Lemma 2.5. Let (M,F ) be a compact Finsler manifold. Then the following relations are
equivalent.

i. The vertical distribution V ˆTM0 is totally geodesic in T ˆTM0.
ii. The vertical distribution V ˆTM0 is minimal in T ˆTM0.
iii. R = 0.

In any case, the function F reduces to Riemannian metric.

Proof. According to Part [iii] of Proposition 2.3, R = 0 if and only if L = −2C. By the same
argument in ([11]), we have the proof. □
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3. The Chromatic polynomial structure on Finsler manifold
This is a reminder of the chromatic polynomial structure notions we will use in the follow-

ing. More details can be found in [3, 6, 8, 15]. The Golden mean canon is found in the linear
proportions of masterpieces of architecture, human, animal, and plant bodies. The Golden
mean canon arose from the division of a unit segment line AB into two parts x and 1x, such
that x

1−x = 1
x . On the other hand, one can say that Golden mean canon follows from a square

equation x2 − px− q = 0, where p = 1, q = 1, which solution is ϕ = 1+
√
5

2 .
As it is known, it is very easy to find the members of “the metallic means family” (Spinadel,
1999) as solutions of the above equation, for fix two various values of the positive integers
p and q. In fact, if p = q = 1, we have the Golden mean canon. Analogously, for p = 2
and q = 1, we obtain the Silver mean; for p = 3 and q = 1, we get the Bronze mean. For
p = 4, q = 1 we have the next metallic mean, etc. It should be mentioned that many authors
wrote about the close relation of some the metallic means family to classical Fibonacci num-
bers, fractal geometry, dynamical systems, quasicrystals, etc.

Let P[x] be the algebra of all polynomials, and Pn(x) be a polynomial of degree n, in
P[x]. We define AP , called the induced algebra with respect to Pn(x), to be the set of all
polynomials of degree less than n together with the addition and scalar product induced by
P[x]. The multiplication in AP is defined in such away. Therefore AP is isomorphic to the
quotient algebra P[x]/ < Pn(x) > .

Definition 3.1. Let M be a C∞ Riemannian space. A C∞ tensor field W of type (1.1) on M
is said to define a chromatic polynomial structure of degree d on M if d is the smallest integer
for which the power 1,W, ...,Wd are dependent, and W has constant rank on M .

If dimM = 2n, an almost complex structure on M is a chromatic polynomial structure of
degree 2. If dimM = 2n − 1, an almost contact structure on M is a chromatic polynomial
structure of degree 3. Quartic structures are chromatic polynomial structures of degree 4.

Example 3.2. A vector (X1, ..., Xp) from T(x1,..,xp)E
p is tangent to Sp−1(r) if and only if we

have

(3.1)
p∑

i=1

xiXi = 0.

Consider a vector (X,Y, Z) in R3 that tangent to S2. We define a tensor field W of type (1.1)

by W(X,Y, Z) = (ϕX, (1− ϕ)Y, (2− ϕ)Z), where ϕ =
1

2
. The tensor field W satisfying

(3.2) W2 +
4

5
W− 20

13
= 0.

Thus, W is a chromatic polynomial structure of degree 2 on the sphere S2.

Definition 3.3. Suppose (M, g) be a Riemannian space and W is a chromatic polynomial
structure of degree d on M . We say that the metric g is W-compatible if the equality

(3.3) g(W(X), Y ) = g(X,W(Y ))

is satisfied for every tangent vector fields X,Y ∈ χ(M).
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Definition 3.4. A Riemannian space (M, g) endowed with a chromatic polynomial structure W
of degree d so that the Riemannian metric g is W-compatible is named a chromatic polynomial
Riemannian space of degree d and (g,W) is named a chromatic polynomial Riemannian
structure of degree d on M .

Proposition 3.5. If (M, g1,W1) and (N, g2,W2) are two chromatic polynomial Riemannian
spaces, then the product manifold M ×N admits a chromatic polynomial Riemannian struc-
ture.

Proof. We define the Riemannian metric g and (1, 1) tensor field W on M ×N by
(3.4) g((X1, Y1), (X2, Y2)) = g1(X1, X2)g2(Y1, Y2)

(3.5) W : T (M ×N) −→ T (M ×N)

W(X,Y ) = W1(X)W2(Y ).

The metric g is W-compatible. □
Definition 3.6. Let (g,W) and (g,W′) are tow systems of chromatic Polynomial Riemannian
structure of degree d on Riemannian orbifold (M, g). We say that (g,W) and (g,W′) are
equivalent or( (g,W) ∼P (g,W′)) if and only if there exists a diffeomorphism Q : TM −→ TM
such that:
1) For all m ∈ M Qm : TmM −→ TmM is a vector space isomorphism.
2) ∀m ∈ M , Wm = W′

mo Qm.

Example 3.7. Let the Lie group M = R2×R where t ∈ R acts on R2 as
[
et 0
0 e−t

]
. Therefore

multiplication is given by (x1, y1, t1)(x2, y2, t2) = (x1+et1x2, y2+e−t1y2, t1+t2) together with
the left invariant Riemannian metric
(3.6) ds2 = e−2tdx2 + e2tdy2 + dt2

whenever X1 = et
∂

∂x
, X2 = −e−t ∂

∂y
, X3 =

∂

∂t
then (X1, X1) = e−2t, (X2, X2) = e2t, (X3, X3) =

1.
A C∞ tensor field W such W(X1) = 3X1,W(X2) = −2X2,W(X3) = −X3 of type (1, 1) on M
define a polynomial Riemannian structure of degree 3 satisfying in W3 − 7W− 6I = 0. Now
consider another polynomial Riemannian structure of degree 3, W′(X1) = −3X1,W′(X1) =
−4X2,W′(X3) = −X3 that is zero of ϕ3 + 8ϕ2 + 19ϕ+ 12I = 0.
Tow above polynomial Riemannian structures are equivalent. Because if the diffeomorphism
Q : TM −→ TM is given by  −1 0 0

0 2 0
0 0 1


(or Qm(X1) = −X1, Qm(X2) = 2X2, Qm(X3) = X3) for all m ∈ M , then W′

m = Wm ◦Qm.

3.1. Some results of chromatic polynomial (metallic and golden) structures on
Riemannian spaces. In 2009 Hretcanu and Crasmareano introduce the golden structure
on Riemannian manifolds [7]. Let p and q be non zero integer and that (the discriminate)
R = p2 − 4q is also not zero. The numbers α and β be the zeros of the companion sequences
as follows: An(p, q) = (αn − βn)/(α− β), and Bn(p, q) = αn + βn.
Therefore A0 = 0, A1 = 1, B0 = 2 and B1 = p; and the sequences, follow the recurrence
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relations given above. These sequences are both called Lucas sequences and the number in
them are the generalized Lucas numbers.

Remark 3.8. If p = 1 and q = −1 or in other words a and b be the golden ratio, then An(p, q)
and Bn(p, q) are the Fibonacci and Lucas sequences respectively, where the Fibonacci sequence
is 011235... and the Lucas sequence is 21347... .

These sequences have many useful properties such as A2n = AnBn and if p is an odd prime,
then p divides Ap−(R/p) is (R/p) is the Legendre symbol.

Remark 3.9. If p = 1 and q = −1 then an (1, 1) tensor field W that, is the zero of the
polynomial structure x2 − px + q be a golden structure. Therefore, a golden structure is a
polynomial structure of degree 2.

Definition 3.10. A chromatic polynomial structure on a Riemannian manifold M is called a
metallic structure if it is determined by an (1, 1) tensor field P which satisfies the equation

(3.7) W2 = pW+ qI

where p, q are positive integers and I is the identity operator on the Lie algebra X(M) of the
vector fields on M .

Example 3.11. A vector (X1, ..., Xp) from T(x1,..,xp)E
p is tangent to Sp−1(r) if and only if we

have

(3.8)
p∑

i=1

xiXi = 0.

The tangent space at the point m = (m1,m2,m3) ∈ S2 is given by

TmS2 ∼= {(−m2

m1
v − m3

m1
w, v, w) | v, w ∈ R}

where S2 is the unit sphere. Now suppose X = (
−m2

m1
v − m3

m1
w, v, w) and Y = (

−m2

m1
v′ −

m3

m1
w′, v′, w′) be two independent vectors in TmS2. We can define a polynomial structure of

degree 2 on S2 by a (1, 1) tensor field W(X) = λX and W(Y ) = (2 − λ)Y where λ is an
arbitrary scaler. Its polynomial is W2 − 2W− (λ2 − 2λ)I = 0.
A (1, 1) tensor field P that given by W(X) = −X − Y and W(Y ) = X − Y satisfies in
W2 + 2W+ 2I = 0. It is another example of polynomial structure on the sphere S2.

Consider two Riemannian spaces M and N . Suppose (g1,W) is a golden Riemannian
structure on M. If f : M −→ N is a diffeomorphism, then N admits a golden Riemannian
structure induces by f . For its to hold, we define a Riemannian metric g2 and the golden
structure W2 on N by

(3.9) g2(X,Y ) := g1(f
−1
∗ X, f−1

∗ Y )

(3.10) W2 : TN −→ TN

Y ′ 7−→ f∗(W(f−1
∗ Y ′))

the Riemannian metric g2 is W2-compatible.
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Definition 3.12. let (g,W) and (g,W′) are two systems of golden Riemannian structure on
Riemannian space (M, g). We say that (g,W) and (g,W′) are equivalent or( (g,W) ∼G

(g,W′)) if and only if there exists a diffeomorphism Q : TM −→ TM such that:
1) For all m ∈ M , the Qm : TmM −→ TmM is a vector space isomorphism.
2) ∀m ∈ M , we have Wm = W′

mo Qm.

Proposition 3.13. Let W be a golden structure on a Riemannian space (M, g). If Q = λI and
W′ = W ◦Q = −(1 + λ)I, then (g,W) ∼G (g,W′), (where λ is a scaler).

Proposition 3.14. Suppose (g,W) is a golden Riemannian structure on Riemannian manifold
space M and the diffeomorphism Q : TM −→ TM satisfies in the following condition:
1) (Wm ◦Qm)− (Wm ◦Qm)−1 = I
2) g(Wm(X), Qm(Y )) = g(Qm(X),Wm(Y )), for (X,Y ) ∈ χ(M)
then (g,W) ∼G (g,W ◦Q).

Proof. Suppose that W̃m and Q̃m are the matrix associate the linear transformation Wm

and Qm for all m ∈ M . If W̃mQ̃m − (W̃mQ̃m)−1 = I, then W̃mQ̃mW̃m = W̃m + IQ̃−1
m .

Therefore (W̃mQ̃m)2 = W̃mQ̃m + I. Since g(X,WmQm(Y )) = g(Wm(X), Qm(Y )) and
g(WmQm(X), Y ) = g(Qm(X),Wm(Y )). Therefore, g is (W ◦Q)-compatible. □
Definition 3.15. The Fibonacci sequence’s initial terms are F0 = 0 and F1 = 1, with Fn =
Fn−1 + Fn−2 for n ⩾ 2. The polynomial Gn(x) = xn − Fnx − Fn−1 (Fn is the Fibonacci
sequence) is called a generalized golden polynomial of degree n.

Proposition 3.16. The generalized golden polynomial Gn(x) is decomposed as follows:

Gn(x) = G2(x)(
n−2∑
i=0

Fix
n−i−2)

where G2(x) is the golden polynomial.

Proof. The main basic idea of the proof is to take mathematical induction and the above
definition. □
Definition 3.17. [14] A P-structure on a differentiable Riemannian manifold space M of di-
mension n is a tensor field P of type (1.1) satisfying P3 − P = 0 on M .

Proposition 3.18. If there exists a P-structure of rank (n− 1), then there exists a polynomial
Riemannian orbifold structure of degree ≤ 3 on M.

Proof. It is sufficient to show that, if there exists a P-structure of rank (n − 1), then there
exists a Riemannian metric g such that g(PX,Y ) = g(X,PY ).
Suppose there exists a P-structure of rank (n− 1). We define, the operators L and T respec-
tively by
(3.11) L = −P2

(3.12) T = P2 − I.

Thus L + T = −I. We denote two types of distributions corresponding to L and T by DL
and DT corresponding to L and T respectively.
Consider the mutually orthogonal unit vectors in DL and DT. Let eiX , for X,Y, Z, ... =
1, 2, 3, ....r be the mutually orthogonal unit vectors in DL and eix for x, y, z, ... = r + 1, r +
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2, ..., n be the mutually orthogonal unit vectors in DT. Let the local co-ordinates of P and T
respectively be Pi

j and Ti
j . Since PT = 0 or in local co-ordinates

(3.13) Pi
jT

j
k = 0

multiplying by ekx we find
(3.14) Pi

jT
j
ke

k
x = 0 ⇒ Pi

j(T
j
ke

k
x) = 0 ⇒ Pi

je
j
x = 0.

Thus we have
(3.15) Pi

je
j
x = 0.

We denote by {ηXh , ηxh} the matrix inverse to {eiX , eix}, then ηXh and ηxh are both components
of linearly independent covariant vectors. Similarly, as TP = 0, we have
(3.16) Pi

jη
x
i = 0.

Define a tensor field of type (0, 2) by
(3.17) hji = ηXj ηXi + ηxj η

x
i

where the repeated index X or x do not represent the summation.
Then hji is well defined and it is a Riemannian metric on M such that
(3.18) ηXj = hjie

i
x and ηxj = hjie

i
x.

Now define g by

(3.19) gji =
1

2
[hji + P t

jP
s
i hts + ηxj η

x
i ].

Then g is Riemannian metric on M such that (3.3) is valid. □
Corollary 3.19. If in a Riemannian space M of dimension n, there exists an almost Lorentzian
paracontact structure (P, u, ω) then there exist a Riemannian metric g such that g is P-
compatible.

Proof. Use [14] and the previous Proposition. □
Corollary 3.20. If the Riemannian space M admits an almost product structure P, then there
exists a Riemannian metric g such that, (g,P) is a polynomial Riemannian structure of degree
≤ 2.

Remark 3.21. The polynomial relation ∼P is an equivalence relation.

Definition 3.22. [16] An f -structure on a differentiable manifold M of dimension n is a tensor
field f of type (1.1) satisfying f3 + f = 0 on M .

Proposition 3.23. Suppose (M, g) be a connected Riemannian manifold space and the (1.1)
tensor field P is a f -structure on M such that g is P-compatible. If the diffeomorphism
Q : TM −→ TM satisfies in the following conditions:
1) (P ◦Q) be an almost complex structure on M .
2) g(Pm(X), Qm(Y )) = g(Qm(X),Pm(Y )) ∀X,Y ∈ χ(M),
then (g,P) ∼P (g,P ◦Q).

Proof. If P is a tensor field of type (1, 1) on M satisfying P3 + P = 0, then the function from
M to the integers assigning to x the rank of P(x) is continuous. In particular, the rank of P
is automatically constant on the components of M . □
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Being given any polynomial with real coefficients P(x) = amxm + ... + a2x
2 + a1x with

a1 ̸= 0, the set of f in Hom(TM, TM) satisfying P(f) = 0 behaves quite similarly.

3.2. The golden structure on Finsler manifold space. In [13] Peyghan and Tayebi
define the new almost complex structure and found that it is a complex structure if and only
if the Finsler metric F is of scalar flag curvature.

Following the research works of Tayebi et al., we are studying these structures on Finsler
manifolds. We also will obtain a condition of the integrability of the golden structure on the
Finsler manifold. Let us define the polynomial structures of degree r on a manifold M with
Finsler metric F .

Definition 3.24. ([4]) Let M be a manifold with Finsler metric F : TM −→ [0,∞). The
polynomial structures of degree r are the tensor fields Ĵ of type (1.1), on tangent bundle TM ,
i.e. Ĵ : T (TM0) −→ T (TM0) such that r is the smallest integer which Ĵr, Ĵr−1, . . . , Ĵ , Id
are linearly independent. Let (M,F ) be a Finsler manifold endowed with the polynomial
structure Ĵ and gy be a fundamental tensor of type (0, 2) . A Finsler metric F is compatible
with Ĵ if it satisfies,
(3.20) gy(ĴX, Y ) = gy(X, ĴY ), ∀X,Y ∈ T (TM0).

Definition 3.25. Let (M,F ) be a Finsler manifold and let (TM, Ĵ) be a golden manifold, i.e.
Ĵ2 = Ĵ + Id. We say that (F, Ĵ) is an almost golden Finsler structure on TM if,
(3.21) gy(ĴX, Y ) = gy(X, ĴY ), ∀X,Y ∈ T (TM0).

In this case, triple (M, Ĵ, F ) is called an almost golden Finsler manifold.

It can be proved that the condition 3.21 is equivalent to the following condition:
gy(ϕ̂X, ĴY ) = gy(Ĵ

2X,Y ) = gy((Ĵ + I)X,Y ) = gy(ĴX, Y ) + gy(X,Y ).

Also, if triple (M, P̂ , F ) is a product Finsler manifold, i.e. P̂ 2 = Id the condition 3.21 is
equivalent to:
(3.22) gy(P̂X, P̂Y ) = gy(X, P̂ P̂Y ) = gy(X, P̂ 2Y ) = gy(X,Y ), ∀X,Y ∈ T (TM0).

Similar to what has been proved in the smooth manifolds(see [3]). It can be shown that the
golden structure and the product structure on tangent bundle TM0, are related to each other
by the following Lemma:

Lemma 3.26. ([4]) Let (M,F ) be a Finsler manifold.
i. A product structure P̂ on TM0 induces a golden structure as follows:

(3.23) ϕ̂P̂ =
1

2
(I +

√
5P̂ ).

We have: Ĵ2 = Ĵ + I, which yields Ĵ = 1+
√
5

2 = 1
2(I +

√
5I) = 1

2(I +
√
5
√
I) = 1

2(I +
√
5P̂ ).

ii. A golden structure Ĵ on TM0 induces a product structure as follows:

(3.24) P̂Ĵ =
1√
5
(2Ĵ − I).

By direct calculations of the previous proof, also this equation can be proved.

As a direct consequence of the above lemma, the following proposition can be considered.
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Proposition 3.27. ([4]) Let (M, Ĵ, F ) be an almost golden Finsler manifold. Then

(3.25) NP̂Ĵ
(X,Y ) =

4

5
NĴ(X,Y ), ∀X,Y ∈ T (TM0).

As mentioned before, a polynomial structure J is integrable if the Nijenhuis tensor NJ

vanishes. In this section, this condition of integrability for almost golden Finsler manifold is
studied.

Suppose M is a manifold with a Finsler metric F . We define an almost golden structure
on the slit tangent bundle and find it is a golden structure if and only if the manifold M has
zero flag curvature.
Using the horizontal-vertical decomposition, we consider the linear map Ĵ : χ(TM0) −→
χ(TM0) by setting :

ϕ̂

(
δ

δxi

)
=

1

2

(
δ

δxi
+
√
5

∂

∂yi

)
ϕ̂

(
∂

∂yi

)
=

1

2

(
∂

∂yi
+
√
5

δ

δxi

)
(3.26)

for i = 1, ..., n. It is easy to show that the golden structure Ĵ is compatible with the Sasaki
metric g̃.

Lemma 3.28. The structure J with the definition of:

J(
δ

δxi
) = A

δ

δxi
+B

∂

∂yi
, J(

∂

∂yi
) = C

δ

δxi
+D

∂

∂yi
,(3.27)

is a golden structure if and only if the following relation to be establish
A2 −A+BC = 1, A+D = 1, D2 −D +BC = 1.

Now we prove that the almost golden structure Ĵ is compatible with the general metric ĝ
if we have c2 = c1/F

2 and c3 = 0. For this purpose, we modify Ĵ to a χ(TM0)-linear map
given in the basis ( δ

δxi ,
∂
∂yi

) as follows:

ϕ̂(
δ

δxi
) = (α1δ

k
i + β1yiy

k)
δ

δxk
+ (α2δ

k
i + β2yiy

k)
∂

∂yk
,(3.28)

ϕ̂(
∂

∂yi
) = (α3δ

k
i + β3yiy

k)
δ

δxk
+ (α4δ

k
i + β4yiy

k)
∂

∂yk
,(3.29)

where αi, βi for i = 1, ...4 are functions on TM0 to be determined. Then lemma 3.28 can be
lead to α1 = α4, β1 = β4 and α2 = α3, β2 = β3 and also{

α1 + 1 = α2
1 + α2

2

α2 = 2α1α2

{
β1 = 2α1β1 + 2α2β2 + F 2(β2

1 + β2
2)

β2 = 2α1β2 + 2α2β1 + F 2(2β1β2)
(3.30)

by solving of the system of Eqs (3.30), the following equations can be written as:

α1 =
1

2
, α2 = ±

√
5

2
, β1 = β2 = 0.

Also the condition of ĝ(ϕ̂(X), Y ) = ĝ(X, ϕ̂(Y )), gives
c1 = c2F

2, β2c1 = β2c3 + F 2(α2c3 + β2c2).(3.31)
By solving of the system of Eqs. (3.31), the coefficients C2 and C3 can be written as seen
below:

c2 =
c1
F 2

, c3 = 0.(3.32)
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Now, we can write the almost golden structure ϕ̂ and the general metric ĝ as follows:

ϕ̂(
δ

δxi
) =

1

2
δki

δ

δxk
±

√
5

2
δki

∂

∂yk
,(3.33)

ϕ̂(
∂

∂yi
) =

1

2
δki

∂

∂yk
±

√
5

2
δki

δ

δxk
(3.34)

and
ĝ(x, y) = c1gijdx

i ⊗ dxj + c1gijδy
i ⊗ δyj + c2gijdx

i ⊗ δyj .(3.35)

Hence, (TM0, ĝ, ϕ̂) is an almost golden manifold.

Lemma 3.29. The Nijenhuis tensor field of the almost golden structure ϕ̂ on tangent bundle
TM for ∂

∂yi
|y ∈ VyTM and δ

δxi |y ∈ HyTM is given by the following:

(3.36) Nϕ̂

(
δ

δxi
,

δ

δxj

)
=

[
ϕ̂

δ

δxi
, ϕ̂

δ

δxj

]
+ ϕ̂2

[
δ

δxi
,

δ

δxj

]
− ϕ̂

[
ϕ̂

δ

δxi
,

δ

δxj

]
− ϕ̂

[
δ

δxi
, ϕ̂

δ

δxj

]
=

[
1

2

(
δ

δxi
+
√
5

∂

∂yi

)
,
1

2

(
δ

δxj
+
√
5

∂

∂yj

)]
+ ϕ̂

[
δ

δxi
,

δ

δxj

]
+

[
δ

δxi
,

δ

δxj

]
−ϕ̂

[
1

2

(
δ

δxi
+
√
5

∂

∂yi

)
,

δ

δxj

]
− ϕ̂

[
δ

δxi
,
1

2

(
δ

δxj
+
√
5

∂

∂yj

)]
=

1

4

[
δ

δxi
,

δ

δxj

]
+

√
5

4

[
δ

δxi
,

∂

∂yj

]
+

√
5

4

[
∂

∂yj
,

δ

δxj

]
+

5

4

[
∂

∂yi
,

∂

∂yj

]
+ ϕ̂

[
δ

δxi
,

δ

δxj

]
+

[
δ

δxi
,

δ

δxj

]
−1

2
ϕ̂

[
δ

δxi
,

δ

δxj

]
−

√
5

2
ϕ̂

[
∂

∂yj
,

δ

δxj

]
−

√
5

2
ϕ̂

[
δ

δxi
,

∂

∂yj

]
− 1

2
ϕ̂

[
δ

δxi
,

δ

δxj

]
=

1

4

[
δ

δxi
,

δ

δxj

]
+

√
5

4

[
δ

δxi
,

∂

∂yj

]
+

√
5

4

[
∂

∂yj
,

δ

δxj

]
−

√
5

2
ϕ̂

[
∂

∂yj
,

δ

δxj

]
−

√
5

2
ϕ̂

[
δ

δxi
,

∂

∂yj

]
=

(
1

4
+ 1

)[
δ

δxi
,

δ

δxj

]
=

5

4

[
δ

δxi
,

δ

δxj

]
= −5

4
Rk

ij

∂

∂yk
,

(3.37) Nϕ̂

(
δ

δxi
,

∂

∂yj

)
=

5

4
Rk

ij

∂

∂yk
,

(3.38) Nϕ̂

(
∂

∂yi
,

δ

δxj

)
=

5

4
Rk

ij

∂

∂yk
,

(3.39) Nϕ̂

(
∂

∂yi
,

∂

∂yj

)
= −5

4
Rk

ij

∂

∂yk
,

where Rk
ij =

1
3

{
∂Rk

i

∂yj
− ∂Rk

j

∂yi

}
. Thus, Rk

i = 0 if and only if Rk
ij = 0. This is just the condition

for (M,F ) to have zero flag curvature. Then we have the follow Theorem:

Proposition 3.30. The almost golden structure ϕ̂ on manifold M with Finsler metric F :
TM −→ [0,∞) is integrable if and only if (M,F ) has zero flag curvature.
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Proof. Let ϕ̂ be integrable, then Nϕ̂ ≡ 0. From (3.36), (3.37), (3.38) and (3.39), we have
Rk

ij = 0.
Conversely, if (M,F ) has zero flag curvature, i.e. Rk

ij = 0, then from (3.36), (3.37), (3.38)
and (3.39) we get Nϕ̂ ≡ 0. By this way, the proof can be completed. □

Remark 3.31. One says that a covariant derivative ∇ on manifold M is adapted to polynomial
structure J if ∇J = 0. We say (M,J, F ) is an almost golden Finsler manifold if ∇F = 0 and
∇J = 0. In this section, it is proved that there is no an almost golden Finsler manifold with
the said metric ĝ.

We shall give the following proposition.

Proposition 3.32. The golden structure ϕ̂ is compatible with covariant derivative ∇̂ if and
only if M is a flat Riemannian manifold.

Proof. Recall that if ϕ̂ is a tensor field of type (1, 1). Then ϕ̂ is compatible with covariant
derivative ∇̂ if ∇̂ϕ̂ = 0 means ϕ̂∇XY = ∇ϕ̂Y

X for every X,Y vector fields on M . By this
definition, two equations can be achieved from the following one:

ϕ̂∇
∂

∂yj

∂

∂yi

= ∇
ϕ̂ ∂

∂yj

∂

∂yi

.

We have
1 +

√
5

3
Ck
ij +

2−
√
5

3
Lk
ij =

1 +
√
5

3
Ck
ij +

2 +
√
5

3
Lk
ij +

√
5

3
Rk

ij ,

1 +
√
5

3
Ck
ij +

−1 + 2
√
5

3
Lk
ij =

1−
√
5

3
Ck
ij −

1 +
√
5

3
Lk
ij +

√
5

6
Rk

ij .

These follow that

Lk
ij = − 5

14
Rk

ij , Ck
ij = − 4

14
Rk

ij .(3.40)

By a simple calculation, using the equation:

ϕ̂∇
δ

δxj

∂

∂yi

= ∇
ϕ̂ δ

δxj

∂

∂yi

it is easy to check that,
2−

√
5

3
Ck
ij +

1− 2
√
5

3
Lk
ij −

√
5

6
Rk

ij =
2 +

√
5

3
Ck
ij +

1 + 2
√
5

3
Lk
ij +

1

3
Rk

ij ,

2
√
5− 1

3
Ck
ij +

√
5− 2

3
Lk
ij +

2
√
5− 1

6
Rk

ij =

√
5− 1

3
Ck
ij −

2 +
√
5

3
Lk
ij −

1

6
Rk

ij .

We have following

Rk
ij = 0, Lk

ij = −1

2
Ck
ij .(3.41)

Using (3.40) and (3.41), we have C = R = 0. Hence, the proof is completed. □
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